×

passage time meaning in Chinese

传代时间

Examples

  1. The first - passage time of controlled quasi - hamilton systems have been studied by using the stochastic averaging method for quasi - hamitonian systems and the stochastic dynamical programming principle
    本文利用拟hamilton系统的随机平均法及随机动态规划原理研究了具有控制的拟hamilton系统的首次穿越问题。
  2. In the case of uncorrelated noises , it is shown that only the fluctuation of degradation reaction rate can induce a switch process , and the mean first passage time ( mfpt ) between the high concentration state and low concentration one is decreased when the noise intensity of degradation reaction rate is increased
    可以看到源于蛋白质基本合成率的噪声强度不能引起基因状态的转变(即基因的开关)而源于降解率噪声强度则能够实现这种开关。当进一步研究在降解率波动作用下基因从一个态跃迁到另一个态的平均首通时间( mfpt )时可以看到此时随着这个波动强度的增加, mfpt是单调递减的。
  3. Then , the dynamical programming equations and their associated boundary and final time conditions for the problems of maximization of reliability and of maximization of mean first - passage time are formulated . the optimal control laws are " bang - bang " controls which are derived from the dynamical programming equations and the control constraints
    然后利用随机平均法及随机动态规划原理导出了以最大可靠性为目标的随机最优控制策略,说明了当控制力为有界函数时,随机最优控制即是bang - bang控制。
  4. First , the backward kolmogorov equation for the conditional reliability function and the pontryagin equation for mean first - passage time and then - associated boundary and initial conditions are derived based on the stochastic averaging methods for quasi non - integrable , quasi integrable and quasi partially integrable hamiltonian systems , respectively
    首先利用拟不可积、拟可积非共振及拟部分可积非共振hamilton系统的随机平均法分别给出了研究该系统首次穿越问题的提法,包括计算条件可靠性函数的后向kolmogorov方程及计算平均首次穿越时间的pontryagin方程及其边值条件。

Related Words

  1. lacrimal passage
  2. nasal passage
  3. passage bed
  4. cargo passage
  5. obscure passage
  6. passage diameter
  7. peripheral passage
  8. pipe passage
  9. drainage passage
  10. piha passage
  11. passage ticket
  12. passage ticket clause
  13. passage to india
  14. passage to india,a
PC Version

Copyright © 2018 WordTech Co.